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The time-dependent form of the classic, two-dimensional stagnation-point solution 
of the Navier-Stokes equations is considered. If the viscosity is zero, a class of 
solutions of the initial-value problem can be found in closed form using Lagrangian 
coordinates. These solutions exhibit singular behaviour in finite time, because of the 
infinite domain and unbounded initial vorticity. Thus, the blow-up found by Stuart 
in three dimensions using the stagnation-point form, also occurs in two. The 
singularity vanishes under a discrete, finite-dimensional ‘point vortex ’ approxi- 
mation, but is recovered as the number of vortices tends to infinity. We find that a 
small positive viscosity does not arrest the breakdown, but does strongly alter its 
form. Similar results are summarized for certain Boussinesq stratified flows. 

1. Introduction 
The question of finite-time blow-up of Euler and NaviePStokes flows in three 

dimensions is an interesting theoretical problem with important physical impli- 
cations. Stuart (1987) has summarized the recent history of the problem, and given 
new examples of blow-up in finite time of solutions of Euler’s equations in an 
unbounded domain. His solutions have a velocity field of the form (u, w, w) = (j’(x, t ) ,  
yg(z, t ) ,  zh(z, t ) ) ,  which is a special case of what shall be referred to here as stugnution- 
point similitude. For Euler’s equations, Stuart’s approach emphasizes the value of 
Lagrangian variables in the analysis of singularities. Since the above form (as well 
as its generalization, see $ 5 )  allows an analogous substitution in the viscous 
Navier-Stokes equations, there is a related class of Navier-Stokes solutions. The 
examples given by Stuart were suggested by the rapidly growing vortex structures 
seen in fully developed shear flows. Because of the importance of this singular 
structure to an understanding of breakdown a t  transition, i t  is of interest to assess 
what, if any, role the stagnation-point similitude might play in its creation. 

The two-dimensional Euler and Navier-Stokes equations provide such an 
opportunity because it is known that, in a bounded domain, a flow, if smooth 
initially, remains smooth for all time (see below). If a two-dimensional stagnation- 
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point flow develops singularities then these must be a consequence of the unbounded 
domain and therefore unphysical ; in that case three-dimensional results based on 
stagnation-point similitude are vulnerable to an analogous criticism. 

Like Stuart, we shall concentrate in this paper on stagnation-point flow possessing 
local similitude. A steady example arises when a stream function of the form yf(x) is 
introduced, which leads to an ordinary differential equation for f(x). A familiar 
example is the flow studied by Hiemenz, and later by Howarth (1951) (see Batchelor 
1967, p. 28). Here f(0) =f,(O) = 0 and f, = - 1  a t  x = 00. This corresponds to a 
stagnation-point outer flow with stream function -xy, hence to a flow from positive 
I): which impinges on a solid wall a t  x = 0. The boundary layer extends to IyI = co in 
x 3 0, with characteristic thickness independent of x. 

Our purpose here is to investigate a class of unsteady, two-dimensional problems 
with linear dependence in one or more dependent variables, the substitution (u, v) = 
(@cy, -@,) = (f(x, t ) ,  - yf,(x, t ) )  being our principal example. Substitution into the 
vorticity equation 

yields, after one integration, the following partial differential equation for AX, t )  : 

Wt + uw, + voy - vv2w = 0, w = - v2fi (1.1) 

(1.2a) 

where h(t) is an arbitrary function. We shall be interested in the initial-value problem 
for f in the interval 0 < x < L subject to the conditions of no slip a t  the boundary 
points x = 0, L : 

f(0, t )  = f ( L ,  t )  = 0, ( 1 . 2 h )  

f,(O, t )  = f,(L, t )  = 0 for t > 0. (1.2c) 

Given (1.2) we may then integrate from 0 to L to obtain an equation for h(t): 

1 

If the kinematic viscosity, v ,  is zero, then (1.2a) reduces to the analogous Euler 
problem, 

and the last two conditions in ( 1 . 2 ~ )  must be dropped. The resulting problem is 
considered in the next section, where we shall show that a smooth, bounded solution 
becomes singular after a finite time. Holder (1933), Wolibner (1933), and more 
recently Kato (1967) have proved that this cannot happen for bounded initial values 
and a bounded domain, so this breakdown is a consequence of the linear dependence 
in y in the strip 0 < x < L. Nevertheless, vorticity is an integral part of the structure 
of these singular solutions and they provide a simple and useful testing ground for 
various ideas and methods which are applicable also to the much harder initial-value 
problem in three dimensions. 

For example, in $3  we examine an approximate, discrete representation of the 
solution of the Euler problem, analogous to a ‘vortex method’ for two-dimensional 
inviscid incompressible flow. In  this approximation f is a piecewise linear function of 
x. The points of discontinuity, which we shall refer to as ‘kinks’, are points where the 
vorticity is concentrated. (Actually each such point determines a vortex sheet 
parallel to the y-axis, the strength of which is proportional to y.) Numerical solutions 
of the discrete system show that f remains bounded for all time, but that the 
maximum amplitude tends to infinity as the number of kinks increases. Moreover, we 
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recover the breakdown time as the limit of these times of maximum amplitude. This 
calculation provides a useful example of how a finite-dimensional representation 
approximates the singularities of an infinite-dimensional system. 

It might be thought that global existence would hold for solutions of the 
Navier-Stokes problem (1.2), (1.3), but this is apparently not the case, as we shall 
show in $4. There we prove that for sufficiently small initial Reynolds numbers the 
flow decays to zero, but find numerically that sufficiently large initial Reynolds 
numbers produce finite-time blow-up. Moreover, the viscous singularities appear to 
have a richer structure than conventional boundary-layer theory would suggest. 

I n  the final section we summarize our results and discuss various aspects of the 
question of singularities of flows in two or three dimensions, emphasizing the special 
nature of the stagnation-point solutions. We also indicate another class of problems, 
involving a stratified, Boussinesq fluid in a gravitational field, which can be solved 
by these methods. An example is worked out in detail in Appendix B. 

2. Inviscid solutions 
We define the operator L on a function, q(x,t) ,  by 

We also introduce the Lagrangian coordinate x(xo, t )  satisfying 

xt = f ( x ,  t )  ( 2 . 2 ~ )  

and 2(x0,O) = xo. (2.2b) 

We denote differentiation of q with respect to t with xo fixed by q and thus q = qt + f q z .  
The Jacobian J of the transformation to Lagrangian variables is defined by 
J = ax/i3xo and is initially unity. Differentiating ( 2 . 2 ~ )  with respect to xo we find 

J =  f z J ,  (2.3) 

i.e. L[J] = 0. An equation of the form L[q] = R(xo, t )  can therefore be solved by 
variation of parameters by setting q = J Q  and noting that q = J Q +  JQ = f,q+ JQ 
and therefore Q = J-IR. For convenience we introduce $ = 1/J. In  particular, 
because L[J] = 0, we see that f ,  = $J = -4/$. 

We are now prepared to solve (1.2) with v = 0 under the conditions 

f ( x ,  0) =fo(x,), f(0, t )  = f ( L ,  t )  = 0, (2.4) 

where f gN(xo) is assumed to be continuous for 0 < x < L .  We consider three different 
methods for solving the problem for general fo. The first two are related and rely on 
a transformation to Lagrangian variables, the second method being the two- 
dimensional version of the Lagrangian method used by Stuart (1987). The third 
method, while less general than the first two, uses Eulerian variables and is more 
direct in some cases. 

2.1. The j r s t  method 

Because f, = - 4 J  from (2.3), substitution into (1.2a) yields (by the procedure just 
given) the following problem for $(xo, t )  : 

$+h(t)$ = 0, $(xo,O) = 1, d(xo,t) = $,(x0), (2.5) 
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where 4, = -f;(x,). We write the solution of (2.5) in the form 
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$(xo, t )  = $1(t) + $o(xo) 

in terms of linearly independent solutions dl and $2, with 

( 2 . 6 ~ )  

(2.6b) 

The function h(t) will be determined by (1.2b), because the vanishing of f  at the 
endpoints implies that x(0, t) = 0 and x(L, t) = 15. Integrating J we thus have 

L = $-I dzo = 5: + $o(xo)  $ z ( t ) l - l  dxo. (2.7) 

This yields a relation of the form F ( # l ,  $2) = constant. Since Lagrangian coordinates 
must be one-one we assume that the integrand in the last expression is well behaved. 
Differentiating with respect to t ,  we obtain (with subscripts denoting partials) 

Fll 4: + 2FI2 d2+ F,, & + Fl $l + F, $2 = 0. (2.8) 

This yields h(t)  = FIl& + 2F12 41 4 2  + F22 4; 
Fl $1 +F2 $2 

If, for example, $1 can be obtained as an explicit function 
second-order nonlinear equation for $2 can be obtained. In 
the form 

dr = P ( 4 )  

of $2, G($ , )  say, then a 
general, an equation of 

(2.10) 

results, where P is a certain nonlinear matrix function of the elements of the 
fundamental solution matrix 4, as determined by (2.9). 

2.2. An example 
Suppose that 

f, = 4x0(2-x0), L = 2, $o = x,-1. 

From (2.7) we then obtain 

(2.11) 

Thus v& 
h =  

$2G'-G 
(2.13) 

is used in the equation for $2 ; the result is easily integrated once and we have 

$2 = [sinh ($2)/$212. (2.14) 

From (2.6) and (2.12) there results 

J = [sinh ($2)/$2] [cosh ($,) + (xo- 1) sinh ($,)]-'. (2.15) 

We may now obtain x(zo,t) by integration of (2.15) with respect to z,. Letting 

(2.16) 

7 = q52 we obtain 
x = 7-l In (1 + xo e7 sinh 7). 
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FIQURE 1. (T/sinh?)*flz, t )  at T = 0, 1,  5 and 25. At this last instant, (sinh7f7)2 = 2.1 x loL8 and 
t = t*-2.51 x 10-19. 

Finally, we may find f(x, 1)  by differentiating (2.16) with respect to t and eliminating 
xo in favour of x: 

Noting that 

t (7)  = cr2/sinh2 (a) da ,  t ( m )  = I 
we observe that f as given by (2.17) becomes unbounded at time t * ,  with 

(2.17) 

(2.18) 

(2.19) 

as breakdown is approached. We show f ( x ,  t )  in figure 1. Near t* we see that, away 
from endpoints, f grows like (2 -z) +/7.  Thus the velocity grows while the flow 
becomes irrotational over the interior (since f,, x 0 there and vorticity = - yf,,). 

This growth is supported by the increase of vorticity near x = 0. It is helpful to 
think of a given layer y = constant in a channel of width 2. Because the initial 
vorticity increases indefinitely with y, the downflow occurring initially in the region 
0 < x < 1, and thereafter near x = 0,  has the effect of bringing down large vorticity 
from high in the channel. Indeed we observe that v = y = - yf ,  = - y J / J  or 
y(xo, yo, t )  = yo/J. Thus, y(0, yo, t )  = yo/(ie7) and so arbitrarily large vorticity is 
advected to the layer in question within time t*. We thus conclude that the 
singularity forms as a result of the unboundedness of initial vorticity. On the 
other hand the singularity is a consequence of Euler's equations within this class 
of solutions ; no arbitrary functions or parameters have been manipulated to 
produce it. 
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2.3. The second ,method 
We now describe an alternative method for producing a general solution to L[ f,,] = 0. 
It is less direct than the first method, but parallels closely the general formal 
solution of Euler's equations in Lagrangian coordinates. Since L[J]  = 0 our equation 
can clearly be solved exactly in the form 

f,, = f ,"(xo) J k o ,  t ) .  (2.20) 

This is the present version of Cauchy's integration of the vorticity equation using 
Lagrangian coordinates (Batchelor 1967, p. 276). To obtain the corresponding 
Biot-Savart integral, expressing velocity in terms of vorticity, we may simply 
multiply (2.20) by J and integrate with respect to xo. If we define s = 2f A we see that 

2f, = J2ds.  (2.21) s 
Note that the initial condition can be absorbed into a single independent variable S. 
If we set f, = J /J  = $H, then we obtain after a differentiation of (2.21) with respect 
to s 

This is Liouville's equation, the general solution of which can be found in closed form 
(see e.g. Drazin 1983, chap. 7). Note, however, that we have reduced the problem of 
solving L[ f,,] = 0 to the finding of a particular solution of (2.22). Also to ensure that 
the transformation from xo to x is one-one, we shall require that f ," $: 0 in the interval 
0 < xo < L ,  a condition that is not needed using the first method. 

For our purposes it is sufficient to note that an exact solution of L[f,,] = 0 is 
f = A sin (Bx), where A and B are arbitrary constants. For this steady solution we 
may evaluate the Jacobian by solving (2.2). The result is 

(2.22) H,, = eH, H(s ,  0) = 0. 

J = [cosh ( k t ) -  (s/2k) sinh (k t ) ] - l ,  k = AB. (2.23) 

In  order to satisfy the boundary conditions on f we need an arbitrary function of 
time, not present in (2.23). However, we have the following easily proved result : if 
,F?(s, t )  is a solution of (2.22), so is H(s ,  7) = In ( i ( t ) )  +H(S,  7 ) ,  where 7 is any function 
oft satisfying i ( 0 )  = 1 ,  ~ ( 0 )  = 0, i ( t )  > 0. Thus we obtain the general solution of (2.22) 
in the form 

J =  (2.24) 

Here k is an arbitrary constant which can be chosen, given f,, so that the 
denominator in (2.24) does not vanish. At this point (2.24) stands as a general 
solution, even for an fo whose second derivative vanishes somewhere in the interior. 

The equation which determines 7 ( t )  is again that J have integral L over the 
interval : 

dxo = L. (2.25) 
cosh k 7 -  ( s ( x 0 ) / 2 k )  sinh k7 

For suitably small k, this yields a differential equation for 7.  Once it  is solved, (2.24) 
may be integrated to obtain f, and then f(x,t). For the example given above, 
the equation for k7 is the same as equation (2.14) for q5*. The integrations then yield 
(2.16). We may here take k = 1 and require maxIs(xo)l < 1 although (2.16) is 
independent of the choice of k as long as (2.25) is defined. 

+; 
cosh k7 - ( s / 2 k )  sinh k7 ' 

i t  1 
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2.4. Solutions on an inJinite interval : inviscid stagnation-point and inertial-layer 
solutions 

It is of interest to make contact with the classical stagnation-point flow (see 
Batchelor 1967, p. 285) in the unsteady context, although this is a different initial- 
value problem. We take L = 00 and require that f, +- 1 as x+ 00. Assuming that 
- 1 G f h d O w e h a v e  

J = ii(coshT-fhsinh7)-'. (2.26) 

Since, for the Lagrangian form of stagnation-point flow, J x ect for large x,,, we see 
from the above that T = t .  From f, = J/J  we then obtain 

sinht-fhcosht 
cosh t - f sinh t * f z  = - (2.27) 

In this solution there is no finite-time singularity since the fluid is inviscid, and 
vorticity is advected steadily into an ever-smaller layer at the wall. The flow becomes 
irrotational (f, x - 1 )  in infinite time a t  all positive x. 

Finite-time singularities are by no means ruled out on an infinite interval, 
however, even in two dimensions. The solution 

1 -ecz 
t*-t 

f=-  (2.28) 

of (1.4) with h(t)  = 0 is a simple example of a blow-up which occurs even though the 
vorticity decays exponentially as x + 00. It represents a time-dependent inertial 
layer in the domain x > 0. A somewhat more complicated inertial-layer solution 
can be obtained using the method of 52.1, with h(t) = 0 in (2.5) and taking 
f' 0 -  - eczo( 1 - ecxo). Then $ = 1 - f 6 t and x can be found by integration : 

x = + l n ( E 2 - t E + t ) + -  [ tan-' - ') - tan-' (?)I, (2.29a) 
A 

where E = e50, d = (4t-P);. (2.29b) 

That a singularity occurs as t --f 4 is evident from the local representation of x(E, t) 
valid for E - 2 small and of order (4 - t); : 

z z L [ n + 2 t a n - ' ( m ) ]  E-2 
(4-t)i 

(2.30) 

2.5. The third method 
Certain interesting solutions of (1.4) can best be found by direct approach in Eulerian 
variables. An example is a one-parameter family of separable solutions of the form 

(2.31 a ,  b )  

Substituting into (1.4) and (1.26) we obtain 

F + F F " - F 2  = (t*-t)'h(t) @, F ( 0 )  = F ( L )  = 0. (2.32a, b )  

Of course q2 must be constant and (2.32) implies 

[F'dx = WL (2.33) 
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and so the blow-up time is 
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t*(q) = q - . (&J (2.34) 

The problem in (2.33) is now reduced to quadratures by introducing 

G E F ,  (2.35 a)  

and writing 

(2.35 b)  

where p = t [  1 + ( 1 + 4q2)$. (2.36) 

To avoid singularities where F = 0, one requires that G = p or - q 2 / p  a t  these points. 
Specifically we suppose G = - q 2 / p  at x = 0. Dividing ( 2 . 3 5 ~ )  by (2.353) gives a 
separable equation which can be integrated to yield 

P2 
p2+q2' 

F = C ( p  - G)"(G + q2/p)'-", 01 - (2.37a, b)  

The constant of integration, C, is found by requiring that a t  x = 0 and x = &, 
F = 0 and G = - q 2 / p  and p respectively. F is antisymmetric about x = & so that it 
also vanishes a t  x = L. I n  fact, one can regard the family of solutions as periodic in x 
with period L.  On combining (2.353) and ( 2 . 3 7 ~ )  one then has 

x = - c  dG,(P-G,)=-l(G,  +q2/p)-" (2.38) 
--Q2/p 

so that at x = $5, where G = p ,  

P 
& = -C[ dG,(p-G,)"-1(Gl+q2/p)-a 

- 2 l p  

= - C dz( 1 - z ) ~ - ~ z - "  I: 
= - nC/sin nu, 

or C = - L sin (7c01)/2n. 

A simple limiting case is q2 + 00 so that a+& t* + CO, and (2.37) is 

or 

(2.39 a )  

(2.39 b )  

( 2 . 3 9 ~ )  

(2.40 a)  

(2.40b) 

I t  is easy to show by direct substitution that (2.40b) is a steady solution of (1.4) (and 
hence t* = co) of (1.4). 

The complementary case is q2 + 0 so that 01 -+ 1 and t* + 0. I n  this instance F' FZ - q 
on the entire interval 0 < x < L except for an internal boundary layer at x = &, of 
width q. This 'sawtooth', which instantly blows up, is essentially identical to a 
periodic extension of the last profile (7 = 25)  in figure 1 .  As a representative of the 
family between these limiting extremes for q, we plot in figure 2 the case q = 1 on the 
interval x = 0 to x = L = 2 .  
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FIGURE 2. The spatial structure of the separable, inviscid solution: (a) F ( z ) ,  ( b )  G = dF/dx. The 
normalization is G2 dz = 1. 

This one-parameter family of solutions shows that boundary-layer formation, as 
in (2.17) and illustrated in figure 1, is not essential to finite-time blow-up. This 
important point will emerge again in $4 where we find that small viscosity does not 
prevent finite-time blow-up, but it does prevent the concentration of vorticity into 
increasingly thin boundary layers. 
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FIGURE 3. (a) Definition sketch for the one-kink model. The kink is at 5 = 5 and the slopes of the 
two straight-line segments are a, and a2 as in (3.1 a ) .  ( b )  Phase-plane evolution of the system in 
(3.3). Because a, and a2 have opposite signs, andf,,, = a,a,/(a,-a,), there is no singularity and 
in fact f,, ultimately approaches zero. 

3. Concentrated vorticity 
The aim of the present section is to indicate how point-vortex methods (see e.g. 

Aref 1983) used in the numerical solution of Euler’s equations in two dimensions 
have a natural counterpart for our inviscid model (1.4). Since irrotational flow 
corresponds to fzz = 0, a flow with concentrated vorticity should be generated by f 
values that are piecewise linear in x. We shall refer t o  a point where the slope off is 
discontinuous as a ‘kink’. We shall show that the motion and evolution of kinks 
provides a natural numerical approximation. Our work will be formal although the 
relative simplicity of the construction invites a more rigorous approach. 
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3.1. A one-kink model 

Consider, for example, the single-kink representation shown in figure 3 (a) .  We set 

f = alx, 0 d x < t ( t ) ,  and f = a&-I,), 6 < x < L ,  (3 . la ,  b)  

where a15 = 4 t - L h  ( 3 . 2 ~ )  

and then substitution into (1.4) produces two equations for the a together with an 
equation for the motion of the kink (obtained as a coefficient of a delta function) : 

(3.2 6 ,  c )  

From ( 3 . 2 ~ )  we obtain t = La,/(a,-a,), and differentiation using (3.2b) produces 
a second expression for 8. Combining this with ( 3 . 2 ~ )  we obtain h = 2a1a,. This 
expression for h is consistent with the inviscid form of (1.3) under the substitution 
( 3 . 1 ~ ) .  We thus obtain from (3.26) the autonomous system 

&,-a: = &,-at = h(t) ,  i = f ( & t )  = a,(.  

6, = a;+2a1cc,, li2 = 4+2a,a,. 13.3) 

We sketch the phase plane of this system in figure 3(b) .  The system always evolves 
towards zero, passing through a maximum amplitude before it decays. There is no 
finite- time singularity. 

3.2. A n  N-kink model 

For N > 1 kinks the situation is similar. Let the kinks be located a t  points ti in the 
interval (0, L ) ,  with the corresponding slopes al, . . . , uN+, and denote the value off a t  
ti by f i .  With to = fo  = f N f l  = O,t,,, = L, set 

f(x) = a,(x-ti)+fi, < x < ti, i = 1,  . . . ,  N + l .  (3.4) 

We then have the following system of equations for i = 1, . . . , N :  

N+l 
ai-aE = h( t ) ,  h( t )  = -2 C a:(&-&,), gi = fi. (3.5 a-c) 

In  addition ( 3 . 5 ~ )  holds for i = N+1. Thus (3 .5)  yields 2(N+ 1) equations for 
h,  t,, . . . , tN,  ul , .  . . , aN+l, fl, . . . , f N .  The remaining N equations are the continuity 

i=l 

cons train ts 
f i  = ai(ti+, -&), i = 1, . . . , N .  (3.5d) 

3.3. Calculation of the sample problem 
For the initial function fo = ~ x 0 ( 2 - s O )  we solved the system (3.5) for N = 50,60, . . . , 
250. For all N the function f remains finite but the maximum value f,,, obtained 
increases with N ,  and this value occurs a t  a time t,,, which approaches t* as N 
increases. We show these results in figure 4.  

4. Viscous effects 
We now turn to the behaviour of solutions of (1.2) when v > 0. We shall show that 

sufficiently small initial values off lead to global decay to zero. On the other hand 
we find, using numerical methods, that the blow-up observed in the inviscid case is 
not arrested by viscous stresses. This leads us to the conclusion that sufficiently 
large initial conditions continue to produce finite-time blow-up. 
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FIGURE 4. How increasing the resolution by using more kinks in the representation (3.4) changes 
both fmaX and t,,,. The lowest resolution is N = 50 or 4O/N = 0.8, and N was increased in steps of 
10 until N = 250 or 40/N = 0.16. There i s  never any singularity butf,,, increases as more kinks are 
used and t,,, approaches n2/6. 

4.1. Decay of low-Reynolds-number initial conditions 
To study the question of decay of small solutions, multiply (1.2a) by f, and integrate 
from 0 to L .  This leads to an energy integral of the form 

N = 3S-2vD, (4.1 a )  

(4.1 6 4 )  

We now establish the following result : let an initial Reynolds number be defined 

L 

ST 0 

L 
where N(t) = 1 f;dx, S(t) = f t d x ,  D(t) = I f;,dz. 

0 

by 
R, = N t  Lt lv ,  (4.2) 

where No = N ( 0 )  and similarly for the other variables. Then if R, < 16.212, f will 
decay to zero with time. The essential idea is that the function g = f, has two 
properties 

g(0) = g(L) = 0, gdx = 0 (4.3a, b)  I: 
and all such functions satisfy the inequalities 

( 4 . 4 ~ )  

(4.4b) 
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FIGURE 5. The solution of the Euler-Lagrange equation (A 6). ( a ) f ( z ) ,  ( b )  g = df/dz. According to 
the energy equation (4.1), this initial condition maximizes rate of growth. If R, = h$Lf/v < 16.213 
then the solution decays. Thus all initial conditions with Reynolds numbers below this critical 
value lead to decay. 
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FIGURE 6. Evolution of the profile in figure 5 .  ( a )  The initial Reynolds number is 6400 and in the 
last profile, at t = 1.46, the Reynolds number has increased to 106541. (b )  A 250-kink integration 
of the initial condition in figure 5. Until about t = 1.24 there is close agreement with the results in 
(a )  but after this the two solutions differ. In fact the kink solution does not track the blow-up of 
the viscous solution in (a) .  

In  (4.4b), y is a dimensionless number that we calculate below. Combining these 
inequalities with (4.la),  we have, if Ni < 2vy/3Lf, 

A’ < [3y-lL;Nf- 2v] (4x2/L2) N .  (4.5) 

If& is initially less than 2vy/3Lt, then the term in square brackets on the right-hand 
side is initially negative and becomes yore  negative as N decreases. It follows that 
all initial conditions that have R, E N i L i / v  < 2y/3 decay. In  Appendix A we find 
y = 24.3188 so that the critical Reynolds number is 16.212, i.e. all initial conditions 
.with R, less than 16.212 ultimately decay. The variational calculation in Appendix 
A also provides the ‘most unstable’ initial condition shown in figure 5. Amongst all 
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initial conditions which sptiffy the constraints in (4.3) and have the same initial 
Reynolds number, R, = N; Lz /v ,  this particular profile maximizes the energy source, 
S ,  relative to the sink D .  This profile is therefore an appropriate initial condition for 
examining singular solutions of the Navier-Stokes equation ( 1 . 2 ~ ) .  

4.2. Blow-up in Jinite time of a viscous solution 
Equation ( 1 . 2 ~ )  was solved with the Chebyshev tau method (Gottlieb & Orszag 1977) 
using as many as 55 polynomials. Nonlinear terms were computed spectrally, 
without aliasing error. Time stepping was performed with a leap-frog predictor and 
standard trapezoidal corrector. A typical time step was 0.0002 for the work reported 
here. Accuracy of evolution was monitored by computing both sides of (4.1 a )  every 
250 steps. The relative error was typically 0.005. The Reynolds number of the initial 
condition was varied between 10 and 6400. Blow-up was considered to have occurred 
on machine overflow. Solutions remained accurate to an evolved Reynolds number, 
R(t) = N(t)kLf/v, of at least 300000. 

A typical experiment, begun with the profile in figure 5, and with R, = 6400, is 
shown in figure 6 ( a ) .  The last profile displayed is a t  t = 1.46 and has R = 106541. 
Now shown is the subsequent evolution, which produces machine overflow for 
t z 1.50. At t = 1.49, R = 297580. In  figure 7 ( a )  we show l/R(t) versus t. Note the 
changeover from an initial exponential phase of decay of 1/R, suggesting singularity 
formation in infinite time, to a sudden break a t  about t = 1.4. In  figure 7 ( b )  we show 
an expanded view of the knee of the curve. This suggests that the curve cuts the 
horizontal axis a t  t slightly greater than 1.49. 

We also evolved the same initial condition with R = 00 using from 40 to 250 kinks. 
The result with 250 kinks is shown in figure 6(b). Remarkably, there is very close 
agreement up to approximately t = 1.25 (even with as few as 40 kinks), but the kink 
solution shows no tendency to track the explosive growth of the viscous solution for 
t > 1.25. This is in sharp contrast to the results of $3, where increasing the number 
of kinks gives results that smoothly tend to the continuous result in (2.17), e.g. figure 
3. This divergence between accurate calculation of the partial differential equation 
and the evolution observed in the inviscid kink approximation suggests that viscous 
blow-up differs fundamentally from the first example of inviscid singularity 
formation discussed in $ 2 ,  i.e. (2.17) et seq. In  any case i t  is apparent from figure 6 ( a )  
that concentrated vorticity in a boundary layer is not necessarily associated with the 
viscous blow -up. 

To test the hypothesis that  viscous blow-up differs from inviscid, we took (2.17) at  
7 = 2 (corresponding to t = 1.4033) as an initial condition for the viscous problem 
with R = 6400. (Of course this initial condition fails to satisfy boundary conditions 
on the derivative off, but adjustment takes place after a single time step.) Blow-up 
occurred after an interval of about 0.65, corresponding to an evolved time of 
t = 2.083, greater than the inviscid result of t* = n2/6 x 1.645. This calculation is 
summarized in figure 8. At first, as the inviscid solution, (2.17), suggests, the gradient 
o f f  intensifies on the left-hand side of the domain and one might think that a 
boundary layer is forming there. However as blow-up is approached, f instead 
develops a sign change and the vorticity, -yf,,, is no longer confined to an 
increasingly thin layer near x = 0. This is in contrast to the inviscid solution in figure 
1 and supports our earlier contention, based on figure 6(a),  that viscous blow-up 
differs fundamentally from the inviscid boundary-layer mechanism. Instead we now 
argue that the inviscid separable solutions in $2.5 are a closer approximation to the 
viscous problem. 
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FIGURE 7 .  The inverse Reynolds number of the calculation in figure 6 as a function of time. (a) 
Evolution over the complete time interval showing an initial gradual decline followed by a sudden 
break at t = 1.4. ( b )  An expanded view of the ‘knee’ in (a).  Linear extrapolation suggests blow-up 
occurs at t x f .49. 
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F 

- 10 

FIQURE 8. Viscous evolution from (2.17) a t  T = 2 or t = 1.4033. Blow-up occurs after an interval of 
0.65. The sign change which develops near x = 0 in the last profile is evidence that blow-up is not 
accompanied by boundary-layer formation. 

X 

FIGURE 9. Viscous evolution corresponding to figure 2. In order to see if the separability is 
preserved, all profiles are normalized byf,,,,. Blow -up occurs at  t = 1.3 and there are ten profiles 
plotted a t  equally spaced time intervals of 0.13. The first five profiles coincide to within a line 
width. 

Figure 9 shows the results of viscously evolving the profile in figure 2 starting with 
a Reynolds number of 6400 and No = 1. (Once again, because the inviscid solution 
does not satisfy the gradient boundary condition there is an initial adjustment which 
takes a single time step.) Blow-up occurs at t* = 1.3 whereas with q = 1 and L = 2 
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the inviscid result in (2.27) is t*  = 1.  I n  figure 9, each profile has been normalized by 
its maximum value so that if the separable structure in ( 2 . 2 6 ~ )  were preserved, all 
ten profiles would coincide. But only the first five coincide to within a line width. The 
last two depart considerably but reveal no tendency to form a boundary layer as 
blow-up occurs. Instead, in the final stages of blow-up, the profile becomes 
increasingly disordered, possibly as a result of instabilities on the separable solution 
that reach finite amplitude.? 

We were initially surprised by the failure of the viscous solution to form sharp 
boundary layers - especially because we thought it should be possible to append 
passive viscous layers to (2.17) in order to satisfy the gradient condition at  x = 0 and 
x = L. Thus it is tempting, but incorrect, to suppose that one can match the solution 
(2.17) with time-dependent boundary layers a t  x = 0 and L, chosen to make f, zero 
a t  these endpoints. One reason for the failure of this approach is that, as evaluation 
of ( 1 . 2 ~ )  a t  x = 0 and x = L shows, when u += 0 

f,,,(O, t )  =f,,,(L, t )  = - v - w .  (4.6) 

This solution strategy, in which one constructs two boundary layers, each of which 
communicates only with the interior solution in (2.17), has no way of incorporating 
(4.6). Indeed, one can show that in the most natural scaling, the two third derivatives 
are both non-zero and have different orders of magnitude. 

5. Discussion 
We consider first the implications of this study regarding the inviscid case. The 

surprising feature of the stagnation similitude (u, v) = (f(x, t ) ,  - yf,(x, t ) ) ,  involving a 
single scalar functionf(x, t ) ,  is the blow-up in finite time of the functions determining 
the velocity field and vorticity (here, the function f ). In the model we have studied, 
this breakdown is a result of the unboundedness of the initial vorticity, which in turn 
is a result of the unbounded domain. In  this respect the models we have considered 
here cannot serve as models for three-dimensional singularities of Euler’s equations 
within a bounded domain. As exact solutions, they do tell us something about the 
capacity of the Euler (and Navier-Stokes) equations to support singular solutions, 
but the particular form of the singularities, involving velocity fields which blow up 
everywhere in finite time, is very special. Their use is mainly to show that the 
stagnation-point blow-up which occurs in three dimensions also occurs in two. 

In  a two-dimensional flow within a bounded domain, the stream function would, 
when expanded locally in y, possess an infinite Taylor series in y, with coefficients 
which couple together in the vorticity equation (1.1). Thus the expansion cannot be 
closed with the term proportional to  y, and the singularities obtained with 
stagnation-point structure do not occur. Blow-up of a single coefficient of an infinite 
Taylor series representing a function whose singularity will appear on a small set, e.g. 
a point, is of course to be expected. 

The generalization to three dimensions of the stagnation-point similitude is a 
possible way to obtain exact solutions that model the local behaviour of Euler flows 
in bounded domains. Such a formulation retains the non-trivial structure in the 

t Subtracting the normalized initial condition from the succeeding nine curves in figure 9 gives 
a smooth antisymmetric residual of fixed form. We anticipate tha t  this represents an eigenmode 
which could be found from a linear stability analysis of the base profile. We have not verified this, 
however. 
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vorticity while effectively localizing it to one space dimension. In this respect, the 
similitude improves on such non-local singular solutions as 

(u ,o ,w)  = ( t*- t ) - l (y+z ,z+x,x+y) .  

As Lin (1958) has shown, Navier-Stokes solutions of the form 

(u, 21, w) = ( f l (X,  t ) ,  yf2(2,  t )  + Z f & ,  t )  +f4@, t ) >  Yf&, t )  + Z f &  t )  +f&, t ) )  (5.1) 

are acceptable forms of the stagnation-point similitude. The examples studied by 
Stuart (1987) are equivalent to taking 

f a  =f4 = f s  = f 7  = 0, f i (0 , t )  = 0, f ? ( W , t )  = 0, fefw,t) = 1 ,  ( 5 . 2 )  

with L = 00. The results of the present paper show that blow-up of such solutions is 
not a special feature of three-dimensional structure, within the class (5.1) of flows 
having stagnation-point similitude. This fact makes our study quite different from 
investigation of three-dimensional singularity structure based upon spectral or 
vortex-type numerical methods. 

The two-dimensional, inviscid examples we have given, although not complete, 
indicate that blow-up occurs under a wide variety of conditions. The interval may be 
finite or infinite (with exponential decay of the vorticity for large x in the latter case), 
flf,,, may or may not depend on time, and f may or may not vanish a t  an internal 
point. A precise classification of singularity structure for the inviscid problem, which 
might be accessible from the Lagrangian representation of solutions, would be of 
considerable interest in establishing the scope of this non-physical blow-up. 
Moreover, it would be natural to seek fields which are somewhat less constrained 
than the flows of stagnation-point form. Analogous forms involving two-dimensional 
structure would be extremely difficult to analyse, since they would contain classical 
two-dimensional hydrodynamics as a special case. 

The methods of this paper can be applied to other physical problems. For example, 
if the Boussinesq approximation is made in Euler's equations for an incompressible 
stratified fluid, the governing equations are 

Wt+UW,+21Wy+$,  = WV2W, 4 t + U 4 z + v $ u  = 0, $ = 6p/p,. (5 .3)  

The substitution (u, v ,  $) = ( f ( x ,  t ) ,  - yf,(x, t ) ,  yg(x,  t ) )  now leads to a system in f and 
g which can, in the inviscid case, be studied using the first method of $2. We 
summarize these results in Appendix B and note that in the case of (5.3) there are 
apparently no global regularity results paralleling those of Holder (1933), Wolibner 
(1933) and Kato (1967) for two-dimensional homogeneous Euler flows. Thus it is not 
known if solutions of the initial-value problem for the inviscid form of (5.3) in a 
bounded domain remain regular for all time. 

Regarding the viscous case, only a few examples have been considered in this 
paper, but they clearly indicate that conventional boundary-layer reasoning is 
inadequate for dealing with the dynamic growth which occurs a t  the singularity. The 
understanding of the viscous evolution probably requires analysis of the reduced 
equation which renormalizes the blow-up. Setting 

f ( x , t )  = ( t * - t ) - ' F ( z , 7 ) ,  7 = -ln(t-t), (t*-t)'h(t) = h*(7),  

we see that ( 1 . 2 ~ )  gives 

F,, + F, +FF,, -Fi - w e-TF,,, = h*(7). (5.4) 
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We can therefore regard the viscous correction as a global forcing term which is 
exponentially small a t  large r.  If we take an inviscid solution from the class discussed 
in $8.5, then F would be a steady solution of the inviscid form of (5.4). If, however, 
this solution were unstable on the timescale r ,  then the viscous forcing in (5.4) could 
produce an O(1) change in F(x,r) .  This may be the process we are seeing in the 
viscous calculations a t  the phase of explosive blow-up, although such an explanation 
is tentative. It is also possible that ultimately the singularity is arrested by fine 
structure created during the explosive phase. In  any event the analysis of this phase 
of the blow-up is the most interesting problem for future work suggested by the 
present study. 
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Appendix A. Calculation of y 
To calculate y in (4.4b) we consider the variational problem of minimizing the 

functional in (A 1 )  over the class of functions which satisfy the constraints in (4.3). 
The first of these can be imposed as a restriction on the admissible functions. The 
second is incorporated using a Lagrange multiplier. Thus consider the functional 

S [ g ]  = D2N-aS2+pI, (A l a )  

D = 1: gt2 dx, N E g2 dx, 
0 

g3dx, I = r g d x ,  0 

where a and p are Lagrange multipliers and g is zero a t  x = 0 and x = L ; p is picked 
so that I = 0 and a so that S = L .  (In this Appendix it is convenient to regard g as 
a dimensionless function.) 

The Euler-Lagrange equation obtained from the first variation is 

If this equation is multiplied by g and integrated from x = 0 to x = L one finds 

D2N 
s2 . 

a = -  

Next, if (A 2) is integrated from x = 0 to x = L one has 

3DN LP 
[g/]$+--- = 0, 

2 s  4DN 
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and it is easy to see from the results below (specifically A 7) that g’(0) = g’(L) so 
finally 

6D2P 
P=,,. 

Together (A3)  and (A5)  remove the unknown multipliers from (A2)  and to 
summarize 

A first integral is obtained in the usual way: 

and the constant of integration on the right-hand side of (A 7 a )  follows from the 
integral over the interval (0, L). 

Equation (A 6), or equivalently (A 7), is the Euler-Lagrange equation. If g is a 
solution of this nonlinear problem then so is kg where k is any constant. Thus, 
although we used the normalization S = L in formulating the variational problem, 
alternatives, such as N = L,  are obtained by resealing g. Also, because D2N/S2 is 
independent of k, the minimum value of this homogeneous quotient over all 
functions which satisfy (4.3) is given by the solution of (A 6). A numerical technique, 
described below, produces 

N = 1.2276L, D = 21.9486L-1 (A 8) 

and the extremizing function g, together withf = J i g  dx, is plotted in figure 5.  These 
numerical results give 

min - = 591.40L+ (A 9) 
. D2N 

f3 S2 
or in (4.4b), y = 24.318. 

To solve (A 6) numerically one represents g(x) as 

where Tn(z) is the nth Chebyshev polynomial. Boundary conditions are enforced in 
the usual manner by the tau method. Equation (A 6) is viewed as an N-2 component 
vector-valued functional, X ( g ) .  We look for a zero of X with Newton’s method. 
Convergence is rapid for N 2 30, from even a poor initial guess, with no evidence of 
multiple solutions. 

Appendix B. An inviscid sedimentation problem 

introduced following (5.3) yields the system 
We summarise results for the solution of (5.3) with v = 0. The substitution 

L[f,l = d ” 0 ,  t )  +w, Lrgl = 0. (B 1) 

We shall apply the first method of $2 to (B 1 ) .  Proceeding as in $2.1, see that 
g = g,(xo)  J ,  f, = - d J ,  where 

&+h(t)~,+g,(x,) = 0,  A(0) = 1, dl = 0. (B 2) 
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These initial conditions ensure that the initial velocity is zero. 
We may solve (B 2 )  by setting $ = $l(t)+g(z0)$2(t) where 
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4, +W) $1 = 0, $l(O) = 1 ,  4 1  = 0, (B 3a) 

4, + h(t)  $A2 + 1 = 0, $,(O) = $i2 = 0. (B 3b) 

The condition that determines h(t) is, as in $2, the condition on the Jacobian, 

LLS:.(Ql+g(z1/$2)-1dz~ = 1. 

As an example, we take go = e-Axo, h > 0. Then (B 4) yields 

wherc k = eAL. If (B 5 )  is used to eliminate h(t)  from (B 3), the equation for g$l may 
be integrated once and then expressed as an integral over $l. The time to blow-up 
is then given, for hL = 2, by 

t* = \ /2rd$g$-2[  1 r $ ( G - $ G ) d $ ]  1 x 2.0012. 

It is again easy to implement a ‘kink’ model utilizing a piecewise linear 
representation for f and a piecewise constant function in place of g. Without giving 
details we simply note that for the above example the blow-up does not occur in a 
finite kink model, just as in the Euler flow problem. With hL = 2 ,  the maximum 
amplitude off is found to occur at time 2.136 with 25 kinks, at time 2.0855 with 50 
kinks, and at time 2.0530 with 100. 
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